If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30+40t-4.9t^2=0
a = -4.9; b = 40; c = +30;
Δ = b2-4ac
Δ = 402-4·(-4.9)·30
Δ = 2188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2188}=\sqrt{4*547}=\sqrt{4}*\sqrt{547}=2\sqrt{547}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{547}}{2*-4.9}=\frac{-40-2\sqrt{547}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{547}}{2*-4.9}=\frac{-40+2\sqrt{547}}{-9.8} $
| 2.x-10=20 | | (12)/x-6=(18)/x-4 | | 10x-(2x+9)=-3(-15-4x) | | -14=-g | | 5x+3x=1-17 | | 10x+(300x+200)=60 | | 2p-100=22 | | 8=2(v−12) | | 5a+10a+5=30 | | k10−20=20 | | Xx1.6=25 | | -5(2n-1)=-10n+5 | | 4(6x−8)= 24x−3224x−32 | | -7(x-13)=-175 | | 62+7x-14)=15x-4 | | -17=y+8 | | √(x+1)=7 | | F(x)=6(-1)+9 | | 8.x=64 | | z/8=34 | | -1=c+-6 | | 4(4x+6)=5(3x-2) | | 6t=732 | | 60*x=3 | | 5w-w+w=31+4 | | 6=p–-1 | | 4/(12)=y/9 | | Y=64x-128 | | 36-(3c+4)=2(c+4)+4 | | 10.5=0.5x | | 3n+12=n-20 | | (26r-4)+(15r+29)=180 |